品牌住建
功能房屋檢測
種類可靠性鑒定
分類房屋鑒定單位
數量100000000
鋼結構施工過程中可能出現的問題
近年來,鋼結構材料因其環保、抗震等自身優點,在高層樓房、工業廠房、橋梁等現代建筑中得到了廣泛應用。但在大量的工程建設過程中,鋼結構工程也暴露出了很多質量問題。
鋼結構在施工過程中的常見問題有以下幾種:
1構件的制作問題 門式鋼架所用的板件非常薄,在日常應用中,薄可達4毫米。多薄板的下料切割方式應當剪切方式,而盡量避免火焰切割。這是因為用火焰切割會使得板邊產生很大的波浪狀的變形。目前,h型鋼材料的焊接方式大多數廠家均采用的是埋弧自動焊或半自動焊。倘若在切割時未能把握好手法,很容易發生焊接變形,使構件彎曲或扭曲。
2柱腳安裝問題
2.1預埋件問題 整體或局部偏移,標高有錯誤,絲扣沒有采取保護措施。這將直接造成鋼柱底板螺栓的不對位,絲扣長度不夠。
2.2.錨栓不垂直問題 框架柱腳的底板水平度差,造成苗栓不垂直,使得基礎施工后預埋錨栓水平誤差偏大。
2.3錨栓連接問題 柱腳錨栓沒有擰緊,墊板沒有與底板焊接,部分位置沒有露出2-3個絲扣的錨栓。
3連接問題
3.1螺栓裝備不符合標準要求,使得螺栓不好安裝或導致螺栓安裝不夠緊固。
3.2螺栓絲扣有損傷,螺桿不能順利旋入螺母,阻礙了螺栓的裝配。
3.3現場的焊接問題,質量不能保證,設計所要求全焊透的一、二級焊縫沒有采用超聲波探傷,樓面主梁與柱沒有實施焊接,沒有采用引弧板施焊等等問題造成鋼結構施工問題。
4、構件的變形問題
4.1構件在運輸時發生變形,出現死彎或緩彎,造成構件無法進行安裝。在構件制作過程中由于焊接產生的變形,構件一般呈現緩彎。在構件待運時,支墊點的不合理,如上下墊木不垂直或堆放構建的場地發生沉陷等原因,使構件產生了死彎或者緩變形。構件運輸過程中因碰撞而產生了變形,一般呈現死彎等。這些原因造成的構建變形問題,使得鋼結構材料在施工過程中無常使用,帶來了施工的不便。
4.2鋼梁構件在拼裝之后全長扭曲程度超過允許值,造成鋼梁的安裝質量無法保證。拼接工藝的不合理以及拼裝節點尺寸不符合設計要求等原因,造成了鋼梁結構構件的不合格,在鋼結構施工過程中無法進行建筑實施,質量更是無法保證。
4.3構件起拱,其程度數值大于或小于設計的數值。當構件起拱數值小時,安裝后梁下撓,當起拱數值大時,容易造成構件標高超標。這種現象產生的主要原因是,構件的尺寸不符合設計要求。
本工程為兩層鋼結構廠房,底層為鋼框架,頂層為門式剛架,廠房檐口高度為8.0m,總建筑面積約為4270m 2。剛架梁、柱均采用熱軋H型鋼,外墻墻面4.5m標高以下采用190mm厚多孔磚,其余圍護外墻及屋面均采用壓型鋼板。鋼架(A-C)為單跨,跨度為14.85m,鋼架(D-G)為單跨,跨度為22.8m,各榀剛架間距為6.0m及4.0m。本工程目標使用年限按50年考慮。可靠性結果如下:1.地基基礎現場觀察基礎周邊地面,未見明顯沉陷,觀察室外排水溝及室內墻面等,未見因基礎不均勻沉降引起的裂縫。地基基礎的可靠性等級評定為A級。2.上部承重結構⑴安全性等級本工程為兩層鋼結構廠房,底層為鋼框架,頂層為門式剛架,該結構二層兩端山墻處均設置抗風柱,結構整體布置合理,構件選型正確,傳力路線明確。廠房兩層兩端及中間布置的柱間支撐、屋面橫向水平支撐及剛性系桿與整體鋼結構可形成完整受力系統。構件間連接可靠,工作正常,未見節點有拉裂和滑移現象。所檢柱間支撐、墻面檁條及檁條拉條構件截面尺寸與設計基本相符。支撐系統桿件長細比均可滿足規范要求。結構的整體性等級評定為A級。現場檢查發現剛架梁、柱節點工作狀態正常。鋼框架梁和剛架梁以及鋼框架柱構件承載能力基本滿足規范要求;梁柱連接節點、梁梁連接節點及鋼框架柱柱腳節點承載能力基本滿足規范要求;柱間支撐、屋面橫向水平支撐、縱向剛性系桿承載能力均可滿足規范要求;抗風柱承載能力可滿足規范要求。結構的承載功能等級評定為A級。
程序、安全性評級的分級標準、說明、抗震設防分類標準
程序
⒈使用條件的調查與檢測結構上的作用調查、結構和構件所處的環境類別和環境作用調查及建筑物的使用歷史調查。
⒉地基基礎檢查
3.上部結構及構件工作狀態檢測 ①結構整體布置核查,包含建筑及結構的平、立面布置核查,結構及其支承構造檢查,支撐系統布置檢查等。 ②建筑物的側向位移量測 ③砼結構構件裂縫檢測 ④砼結構構件變形檢測 ⑤鋼結構構件變形及偏差檢測 ⑥鋼材外觀缺陷、損傷及銹蝕檢測
4.上部結構及構件的施工質量及性能檢測①截面構件尺寸量測②構件混凝土強度檢測③柱、梁鋼筋配置檢測
⒌圍護結構檢查圍護結構承重構件的承載功能檢查、非承重構件的構造連接檢查及使用狀況檢查。
⒍承載能力驗算根據檢測數據,結合委托方提供的本工程施工資料,對結構進行承載能力驗算分析。
⒎可靠性評級根據承載能力驗算分析結果,結合現狀調查、勘測結果,對建筑物的可靠性進行評級,并對結構存在的問題提出整改建議。

在長期的自然環境和使用環境的雙重作用下,其功能將逐漸減弱,這是一個不可逆轉的客觀規律,如果能夠科學地評估這種損傷的規律和程度,及時采取有效的處理措施,可以延緩結構損傷的進程,以達到延長結構使用壽命的目的。結構加固是通過一些有效的措施,使受損傷結構恢復原有結構功能,或者在已有結構的基礎上提高其結構抗力能力,以滿足新的使用條件下結構的功能要求。鋼結構房屋由于結構的先天缺陷及惡劣使用環境引起的結構缺陷和損傷,設計標準使用要求的改變,都將導致原結構可靠性的改變,有時經過檢測加固后才能保證功能的正常使用及保證功能改變的順利進行。公司專門從事建筑工程結構安全性檢測、建筑結構加固設計及施工等工作,公司技術力量雄厚,立足深圳,與各街道行政、租賃管理部門、系統、教育主管部門關系融洽,熟悉辦理房屋租賃類房屋安全檢測、酒店賓館、學校幼兒園、建筑加層、外企驗廠、樓面承重、危房鑒定、火災后損傷檢測、裝修改造安全影響評估等各類房屋結構安全性檢測業務辦理流程,確保報告真實有效,科學準確。經過公司苦心經營,現公司業務已整個華南片區,在深圳、惠州、東莞、江門、汕頭、福建、湖南等等地區均有展業房屋安全檢測業務。
1、根據委托單位要求,對受檢廠房就以下項目進行現場檢測:
(1)結構圖紙復核,包括廠房結構形式、軸網尺寸、構件布置等;
(2)廠房變形檢測,包括整體傾斜、相對不均勻沉降等;
(3)主要承重構件鋼材強度檢測;
(4)鋼構件截面尺寸及涂層厚度檢測;
(5)表觀病害普查;
(6)結構承載能力計算分析;
(7)廠房可靠性。
2、檢測依據
本次檢測的主要依據如下:
國家標準:《建筑結構檢測技術標準》(GB/T50344-2004)
國家標準:《建筑地基基礎設計規范》(GB 50007-2011)
國家標準:《鋼結構現場檢測技術標準》(GB/T50621-2010)
國家標準:《工業建筑可靠性標準》(GB 50144-2008)
國家標準:《建筑結構荷載規范》(GB/T 50009-2012)
國家標準:《鋼結構設計規范》(GB 50017-2003)
國家標準:《鋼結構工程施工質量驗收規范》(GB 50205-2001)
國家標準:《熱軋H型鋼和剖分T型鋼》(GB/T11263-2010)
協會標準:《門式剛架輕型房屋鋼結構技術規程》(CECS 102:2002)(2012年版)
標準圖集:《門式剛架輕型房屋鋼結構》(04SG518-3)
標準圖集:《鋼吊車梁》(03SG520-1)
行業標準:《建筑變形測量規范》(JGJ 8-2007)

1基于鋼結構建筑的突出優點,美國、韓國等國的鋼結構建筑已占到總量的50%左右。日本是多地震的國家,鋼結構建筑在日本的占有率更是達到了65%左右,據日本阪神地震后資料顯示,鋼結構建筑在地震中的受損率遠低于混凝土結構建筑。無偶,四川汶川地震,同樣是鋼結構建筑的綿陽體育館受到損壞極小,成為了安置災民的主要地點。
2 多層鋼結構房屋抗震結構體系
鋼結構房屋的結構類型直接影響著多層鋼結構房屋的抗震性能,因此在進行實際工程設計時,必須綜合考慮幾種因素,對方案進行優化設計,然后在優化過程中確定適合本房屋的結構體系。多層鋼結構體系有純鋼框架體系、鋼框架剪力墻體系、鋼框架支撐體系等,它們各有特點,在鋼結構建筑領域中被廣泛的應用。
3 鋼結構的破壞形式
多層鋼結構房屋具有很多優點,它受到震害的影響要比混凝土結構的房屋要小很多,但設計和施工的要求卻同樣重要,如果連接、冷加工、焊接不合理,后期維護不當以及受到外部環境、工藝技術的不良影響,很可能會造成鋼結構的破壞。根據多層鋼結構房屋在歷次地震中的破壞形式可以歸納為以下幾類。
1、框架節點區的梁柱焊接連接破壞:豎向支撐的整體失穩和局部失穩,柱腳焊縫破壞及錨栓失效。
2、構件的破壞:翼緣的屈曲、拼接處的裂縫、節點焊縫處裂縫引起的柱翼緣層狀撕裂、框架柱的脆性斷裂、腹板屈曲和截面扭轉屈曲。
3、構件的局部屈曲破壞:框架梁或柱的局部屈曲是因為梁或柱在地震作用下反復受彎,以及構件的截面尺寸和局部構造如細長比、板件寬厚比設計不合理造成的,柱的水平斷裂是因為地震造成的傾覆拉力較大、動應變速率較高、材性變脆引起的。
4、支撐的破壞:支撐構件為鋼結構提供了較大的側向剛度,當地震強度較大時,承受的軸向力(反復拉壓)增加,如果支撐的長度、局部加勁板構造與主體結構的連接構造等出現問題,就會出現鋼結構的破壞或失穩。
5、節點破壞:由于節點傳力集中、施工難度大、構造復雜,容易造成應力集中、強度不均衡現象,再加上可能出現的構造缺陷、焊縫缺陷,就更容易出現節點破壞。節點域的破壞形式比較復雜,主要有加勁板的屈曲和開裂、加勁板焊縫出現裂縫、腹板的屈曲和裂縫。

我們首先根據圖紙對廠房整體結構布置和概況進行詳細勘查,查勘房屋所采用結構形式是否符合設計圖紙及國家規范規程,傳力路線是否明確,結構布置是否合理,支撐系統是否完整、支撐系統長細比是否滿足規范要求,因為這些都涉及到結構的穩定性問題。而結構穩定性一直是鋼結構的突出問題,一旦出現鋼結構的失穩事故,不但會遭受巨大的經濟損失,而且容易造成嚴重的人員傷亡。所以我們必須了解結構穩定性的基本概念,只有這樣我們才能在鋼結構廠房安全工作中更好的發現和處理鋼結構失穩問題。鋼結構的穩定可分為結構整體的穩定和構件本身的穩定兩種情況。結構整體的穩定,在結構的縱向,主要依靠結構的支撐系統來保證,如鋼柱的柱間支撐,鋼屋架的上、下弦水平支撐和垂直支撐等。支撐系統能否可靠地傳遞結構縱向的水平荷載(風荷載、地震荷載、廠房吊車荷載等)。橫向,依靠結構自身(框架或排架)的剛度來保證,主要要考慮結構自身能可靠地傳遞結構橫向的水平荷載。而構件本身的穩定主要由構件組成部分的自身剛度來保證,要保證構件本身及其組成部份(桿件或板件)在荷載作用下不發生屈曲而喪失穩定(這種情況主要發生在受壓或壓彎構件上)。因此,構件本身的穩定因素主要是構件的計算長度和截面特性,包括平面內和平面外的兩個方向,當然,還應該包括材料的強度和應力的大小。它主要是找出外荷載與結構內部抵抗力間的不穩定平衡狀態,即變形開始急劇增長的狀態,從而設法避免進入該狀態。因此,它是一個變形問題。如軸壓柱,由于失穩,側向撓度使柱中彎矩大量增加,因而柱子的破壞荷載可以遠遠低于它的軸壓強度。顯然,軸壓強度不是柱子破壞的主要原因。在結構穩定性檢測方面主要針對以下幾項重點: (1)、廠房構件的高強螺栓連接質量,采用全站儀對構件連接部分的螺栓外漏絲扣進行符合。 (2)、廠房構件的焊接連接質量,采用超聲波探傷的方法確定焊縫質量等級能否滿足標準要求。 (3)、廠房構件的撓度變形,采用水準儀或拉線的方法確定變形量。
鋼構件進入施工現場后,應檢查構件的規格、型號、數量,并對運輸過程中產生的變形進行檢查與校正,確保構件的質量,同時向監理單位報驗。
1、鋼柱檢驗
(1)鋼尺檢查柱子總長度。
(2)用鋼尺檢查柱底至牛腿面長度。
(3)檢查柱底與基礎錨栓,牛腿面與吊車梁、柱與屋架、柱與柱間支之間聯接孔位置、孔徑和孔距。
(4)用鋼角尺檢查柱底平面、柱頂平面、牛腿平面的平整度。
(5)拉麻線(或鋼絲)檢查柱子撓度。
2、剛梁檢驗
(1)用鋼尺檢查剛梁跨度。
(2)用麻線(或鋼絲)檢查剛梁平面撓度。
(3)檢查剛梁與柱子的聯接點尺寸。
3、支撐檢驗
(1)用鋼尺檢查各類支撐長度和高度。
(2)檢查各類支撐的孔徑和孔距。
(3)用麻線檢查各類支撐的撓曲值。
4、錨栓基礎檢驗
(1)用經緯儀測定跨度及間距軸線是否符合設計要求;
(2)用水平儀測檢基礎平面標高和傾斜度;
(3)檢查基礎錨栓:錨栓埋設位置,錨栓伸出長度及螺紋長度,錨栓垂直度,錨栓絲扣有無損壞。
http://www.ausen.cn